Vectores y Rectas

1.- a) Representa los puntos A(-1, 3) y B(2, 0).**b)** Halla las coordenadas del vector \overrightarrow{AB} . **c)** Dibuja otro vector CD, equipolente a AB, con origen en C(-2, 1); determina las coordenadas de su extremo D.

Sol: b) $\overrightarrow{AB} = (3, -3)$. c) D(1, -2).

2.- Representa gráficamente los vectores $\vec{a} = (-1, -3)$, $\vec{b} = (3,1)$ y $\vec{c} = (2,1)$, halla y representa gráficamente el resultado de las operaciones: $\vec{a} = \vec{b}$; $\vec{b} = \vec{c}$; $\vec{c} = \vec{$

Sol: a) (2, -2). b) (0, -3). c) (-5, -1). d) (1, 2).

3.- a) Halla el módulo de los vectores $\vec{a}, \vec{b} \ y \ \vec{c}$ del ejercicio anterior. **b)** Halla el módulo de $\vec{a} + \vec{b}$.¿Hay alguna relación entre $\|\vec{a} + \vec{b}\| \ y \ \|\vec{a}\| + \|\vec{b}\| \ ? \ c)$ ¿Qué tendría que pasar para que $\|\vec{a} + \vec{b}\| = \|\vec{a}\| + \|\vec{b}\| \ ? \ d)$ ¿Puede ser $\|\vec{a} + \vec{b}\| = 0$, ¿En qué casos?

Sol: a) $\|\vec{a}\| = \sqrt{10}$, $\|\vec{b}\| = \sqrt{10}$, $\|\vec{c}\| = \sqrt{5}$, $\|\vec{a} + \vec{b}\| = \sqrt{8}$. No hay relación. c) Misma dirección y sentido. d) Si; cuando son opuestos.

4.- Halla la distancia entre los siguientes pares de puntos: a) (3, 1) y (5, 3); b) (-1, -2) y (-5, 3); c) (-1, 2) y (5, 2); d) (3, -2) y (3, 4)

Sol: a) $\sqrt{8}$; b) $\sqrt{41}$; c) 6; d) 6

5.- Halla el punto medio de los pares de puntos dados en el ejercicio anterior

Sol: a)(4, 2); b) (-3, 1/2); c) (2, 2); d) (3, 1)

6.- Determina la distancia entre los puntos A(-4,4) y B (2,-2), el punto medio del segmento AB y el punto simétrico de A con respecto a B.

Sol: a) $d_{AB} = 6\sqrt{2}$; b) M(-1,1); c) S(8,-8)

7.- Dado el triángulo de vértices A(3,3), B(0,0) y C(0,4), calcula el punto medio del lado AB, y la longitud de la mediana de ese mismo lado (la mediana es el segmento que une el punto medio de un lado con el vértice opuesto).

Sol: M_{AB}=(3/2,3/2); longitud mediana = $\frac{\sqrt{34}}{2}$

8.-Demuestra que el triángulo cuyos vértices son los puntos A(1,2), B(4,6) y C(7,2) es isósceles.

Sol: $\|\overrightarrow{AB}\| = \|\overrightarrow{BC}\| = 5$

9.-Halla las coordenadas de un vector de la misma dirección que el vector $\vec{v}(3,4)$ y cuyo módulo sea 1.

Sol: $\vec{r} = (3/5,4/5)$

10.- El punto medio de A(-1, 3) y (x, y) es M(2, 1). ¿Cuáles son las coordenadas de B?

Sol: B(5,-1)

11.-Halla un vector director de la recta r que pasa por los puntos A(3,2) y B(3,5), así como la pendiente de dicha recta.

Sol: $\vec{r} = (0,3); m = \infty$

12.- Calcular las coordenadas del punto S, simétrico del punto A(2, 6) con respecto B(4, 5)

Sol: S(6,4)

13.- Los vértices de un triángulo son A(-7,3), B(1,1) y C(-1,5). Halla los puntos medios de sus lados. Comprueba que el triángulo que determinan tiene los lados paralelos al primero y que la medida de sus lados es la mitad.

14.- Si dos vectores tienen la misma longitud, ¿podemos asegurar que son iguales? Razona la respuesta.

- **15.- a**)¿Cuántos sentidos pueden existir en una dirección dada? **b**) ¿Es posible que dos vectores tengan la misma dirección, punto de aplicación e intensidad y que sean distintos? Razona la respuesta. Pon ejemplos.
- **16.- a)** Si las direcciones de dos vectores convergen ¿podrán ser iguales los vectores?. **b)** Dos vectores son paralelos y tienen la misma intensidad. ¿Han de ser iguales? Razona las respuestas. Pon ejemplos.
- **17.-** Determina si las siguientes parejas de vectores son Ortogonales o no:

a) $\vec{u}(3,-2)$ y $\vec{v}(6,4)$ y b) $\vec{x} = (5,1)$ e $\vec{y} = (3,-15)$

Sol: a) No, b) Si

18.- Las coordenadas del punto medio del segmento AB son (3,5). Si B =(0,1) hallar las coordenadas de A.

Sol: A=(6,9)

19.- Hallar las coordenadas de los puntos P y Q que dividen al segmento de extremos A(-5,3) y B(8,6) en tres partes iguales.

Sol: P=(-2/3,4);Q=(11/3,5)

20.- Escribir el vector $\vec{w} = \left(3, \frac{8}{3}\right)$ como combinación

lineal de los vectores $\vec{u} = \left(0, \frac{7}{3}\right)$ y $\vec{v} = \left(1, 4\right)$

Sol: $\vec{w} = -4\vec{u} + 3\vec{v}$

21.- Divide el segmento de extremos A(-2,3) y B(0,-1)en tres partes iguales.

Sol: P₁(-4/3,5/3) y P₂(-2/3,1/3)

22.- Calcula m para que los vectores $\vec{v}(7,-2)$ y $\vec{u}(m,6)$ **a)** Sean paralelos. **b)** Tengan el mismo módulo. **c)** Sean perpendiculares.

Sol: a) m=-21; b) $m = \pm \sqrt{17}$; c) m= 12/7

23.- Si A(3,1), B(5,7) y C(6,4) son tres vértices consecutivos de un paralelogramo, ¿cuál es el cuarto vértice?

Sol: D(4,-2)

24.- Determina si el triángulo de vértices A(12,10), B(20,16) y C(8,32) es rectángulo.

Sol: Si, porque verifica Pitágoras.

25.- Dados los puntos A(3,0) y B(-3,0), obtén un punto C sobre el eje de ordenadas, de modo que el triángulo que determinan sea equilátero. ¿Hay una solución única? Halla el área de los triángulos que resultan.

Sol: $C_1(0,3\sqrt{3})$ y $C_2(0,-3\sqrt{3})$ $A = 9\sqrt{3} u^2$

26.- Determina el valor de a, sabiendo que la distancia entre Q(-6,2) y P(a,7) es 13. Escribe también las coordenadas y el módulo del vector \overrightarrow{PQ} .

Sol: $a_1=6$ y $a_2=-18$ $|\overrightarrow{PQ}|=13$

27.- Dados los vectores \vec{a} (3,-2), \vec{b} (-1,2) y \vec{c} (0,-5), calcula m y n de modo que $\vec{c} = m \cdot \vec{a} + n \cdot \vec{b}$

Sol:
$$m = \frac{-5}{4}$$
; $n = \frac{-15}{4}$

28.- Si M(7,4) y N(-2,1), hallar un punto P en el segmento MN tal que la distancia de M a P sea la mitad de la distancia de P a N.

Sol: P(4,3)

Vectores y Recta

- **29.-** Hallar las ecuaciones paramétricas, continua, general, punto-pendiente, explícita y segmentaria de la recta que pasa por el punto A(-2,3) y cuyo vector de director es $\vec{v}=(3,4)$. Hallar, si existe, un punto de la recta que su abscisa sea6. Hallar también, si existe, un punto de la recta con ordenada -4.
- **30.**-Hallar la ecuación general de la recta r que pasa:
- a) Por los puntos A(3,-1) y B(5,2).
- b) Por A(-2,4) y tiene de pendiente -2.
- c) Por el punto A(1,-3) y es paralela a la recta s: x+3=0.
- d) Por el punto A(-1,2) y es paralela al eje de abscisas.
- e) Por el punto A(4,2) y es perpendicular a 2x-3y+2=0
- **31.**-Hallar el valor de k para que:
- a) El punto (1,2) pertenezca a la recta x 3ky + 3 = 0.
- b) El punto (k,1) pertenezca a la recta x + 2y 4 = 0.
- c) Los puntos (1,2), (5,-6) y (7,k) estén alineados.
- d) La recta 2x+ky=1 tenga de vector director $\vec{v}=(-5,3)$.
- e) La recta kx 3y + 2 = 0tenga dependiente m = -3/2.
- f) Las rectas r: y=9kx+2 y s:4x-ky+1=0 sean paralelas.
- g) Las rectas r: 2x + 3ky + 2 = 0 y $s: \frac{x-2}{-2} = \frac{y+1}{k}$ se corten en un punto.

Sol: a) 2/3; b) 2; c) -10; d) 10/3; e) -9/2; f)
$$\pm 2/3$$
; g) $k \neq \pm \sqrt{4/3}$

32.- Calcula la recta que pasa por el punto P(5,6) y corta a los ejes coordenados según segmentos iguales.

Sol: x + y - 11 = 0

33.- Un paralelogramo tiene un vértice en el punto A(2,3) y dos de sus lados están sobre las rectas r: x+y=20 y s: 2x-3y=10. Calcular las ecuaciones de los otros dos lados y las coordenadas de sus vértices.

Sol: B(11,9); C(14,6); D(5,0); AB: 2x- 3y=-5; AD: x+y=5

34.- Hallar la ecuación general de la recta que pasa por P(-5,0), y por el punto de corte de las rectas r y s.

$$r: x - 2y + 3 = 0$$
 $s:\begin{cases} x = 1 - t \\ y = -2 + 3t \end{cases}$

Sol: 5x-17v+25=0

35.- Hallar la ecuación de la recta paralela a la recta s: $y = \frac{-1}{2}x + 3y$ que corta al eje de ordenadas en y = -3.

Sol: v = -1/2x

- **36.-** Encontrar la ecuación de la recta r, que es paralela a la recta r: 2x-3y+15=0 que pasa por el punto de intersección de las rectas s: y = 3x-1 y t: x+2y+3=0.
 - Sol: 2x-3y-4=

37.- Halla el vector director y un punto de cada una de las siguientes rectas:

a)
$$3x + y - 1 = 0$$
 b) $-2x + 2y - 4 = 0$ c) $x - 3y + 3 = 0$

Sol: a) $\vec{a}(-1,3)$; A(0,1). b) $\vec{b} = (-2,2)$; B(-2,0). c) $\vec{c} = (-3,1)$; C(0,1)

38.- Representa gráficamente las siguientes rectas:

$$r:(x,y)=(1,0)+\lambda(1,1)$$

$$s:\begin{cases} x=1-\lambda \\ y=2+2\lambda \end{cases} \qquad t:\frac{x-1}{-1}=\frac{y+2}{2}$$

39.- Halla la ecuación en forma explícita de cada una de las rectas dadas en el ejercicio 38. Determina la pendiente de cada una de ellas.

Sol: a) y=x-1; m=1. b) y=-2x+4; m=-2. c) y=-2x=; m=-2.

40.- Halla todas las ecuaciones de la recta que pasa por el punto A(1, 2) y su vector director es $\vec{r}(2, 1)$.

Sol: Ec. Vectorial : $(x,y) = (1,2) + \lambda(2,1)$; Ecs. Paramétricas: $\begin{cases} x = 1 + 2\lambda \\ y = 2 + \lambda \end{cases}$

Continua: $\frac{x-1}{2} = \frac{y-2}{1}$; General: x - 2y + 3 = 0; Explícita: $y = \frac{1}{2} \cdot x + \frac{3}{2}$

41.- Una recta pasa por el punto A(1,1) y su pendiente es m=-2. Halla sus ecuaciones implícita y explícita.

Sol: y=-2x+3; 2x+y-3=0

42.- Averigua si la recta s definida por las ecuaciones paramétricas $s:\begin{cases} x=1-2t\\ y=3+t \end{cases}$ pasa por los puntos: a) M(5,1)b) N(-1,3)

Sol: Por M sí, pero por N no.

43.- Halla la ecuación de cada una de las rectas que pasan por los vértices del triángulo de vértices A(0, 0) y B(5, 1) y C(1, 4).

Sol: A - B: x - 5y = 0; A - C: 4x - y = 0; B - C: 3x + 4y - 19 = 0

44.- Halla la posición relativa de las siguientes rectas:

a)
$$\begin{cases} r: x + 2y - 5 = 0 \\ s: 2x - y = 0 \end{cases}$$
 b) $\begin{cases} r: 3x - y - 2 = 0 \\ y = 3x + 1 \end{cases}$

Represéntalas gráficamente para confirmar el resultado Sol: a) Secantes en (1, 2). b) Paralelas.

- **45.-** Dadas las rectas r: ax+y-2=0 y s: x+2y+b=0, halla los valores que deben tomar a y b para que: a) Sean paralelas. b) Sean coincidentes. c) Sean perpendiculares
- Sol: a) a=1/2; b) a=1/2 y b=-4; c) a=-2**46.-** Calcula las ecuaciones vectorial, paramétricas y explícita de las rectas bisectrices de los cuadrantes.

Sol: a) x-y=0; b) x+y=0

47.- Calcula la recta que pasa por el punto A (2,7) y forma con el eje de abscisas un ángulo de 60° .

Sol:
$$y = \sqrt{3}x + (7 - 2\sqrt{3})$$

48.-La recta que pasa por el punto A (2,3) y es paralela a la recta 3x+2y-12=0, forma un triángulo con los ejes cartesianos. Calcula su área.

Sol: $A=12 u^2$

49.- Calcula el valor de k para que las tres rectas r: 2x+5y-1=0, s: -x+2y+k=0 y t: 4x+7y-5=0 se corten en el mismo punto. Determina dicho punto.

Sol: K=5, P(3,-1)

50.- El segmento AB está sobre la recta x-4y+10=0. Su mediatriz es la recta 4xy-11=0. ¿Cuáles serán las coordenadas de B si las de A son (-2, 2)?

Sol: B(6,4)

51.- Halla el circuncentro del triángulo de vértices A(-1, 1), B(3, 4), y C(3, 0).

Sol: C(11/8,2)

52.-Comprueba que el triángulo de vértices A(4,4), B(-2,3) y C(3,-2)es isósceles y calcula su área.

Sol: A=35/2

53.- Por el punto A (1,6) trazamos la perpendicular a la recta r: 2x+y-2=0. Halla un punto de esta recta perpendicular que equidiste de A y de la recta r.

Sol: (-1/5,27/5)

54.- Halla el simétrico del punto P(3,4) respecto de la recta r: 2x-y+3=0

Sol: P'=(-1,6)

55.- Encuentra el simétrico del punto P(2,6) respecto de la bisectriz del primer cuadrante.

Sol. P'=(6,2)

56.- Calcula el área del triángulo de vértices A = (2,1), B = (6,2) y C = (3,5)

Sol: 15/2 u. de área