EJERCICIO 11 : Representa gráficamente las siguientes parábolas

a)
$$y = \frac{1}{2}x^2 - x - \frac{3}{2}$$
 b) $y = \frac{1}{4}x^2 - 2x + 4$ c) $y = 2x^2 - x - 3$ d) $y = -25x^2 + 75x$ e) $y = -x^2 + 2x - 1$

Solución:

a)

• Vértice:
$$x = \frac{-b}{2a} = \frac{1}{1} = 1 \rightarrow y = \frac{1}{2} - 1 - \frac{3}{2} = -1 - \frac{2}{2} = -2 \Rightarrow \text{ El vértice es } V(1, -2).$$

• Puntos de corte con los ejes:

— Con el eje Y
$$\rightarrow$$
 $x = 0$ $y = -\frac{3}{2}$ \rightarrow $\left(0, -\frac{3}{2}\right)$

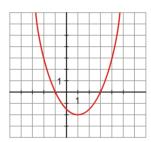
- Con el eje
$$X \rightarrow y = 0 \rightarrow \frac{1}{2}x^2 - x - \frac{3}{2} = 0 \rightarrow x^2 - 2x - 3 = 0 \Rightarrow x = \frac{2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm 4}{2} = \frac{3}{2}$$

Puntos de corte con el eje X: (3,0) y (-1,0)

· Puntos próximos al vértice:

Χ	-2	0	1	2	3
Υ	5/2	-3/2	-2	-3/2	5/2

Representación



b)

• Hallamos su vértice:
$$x = \frac{2}{2 \cdot \frac{1}{4}} = 4 \rightarrow y = \frac{1}{4} \cdot 16 - 8 + 4 = 0 \rightarrow V(4, 0)$$

• Puntos de corte con los ejes:

— Con el eje
$$X \to y = 0 \to \frac{1}{4}x^2 - 2x + 4 = 0 \to x^2 - 8x + 16 = 0$$

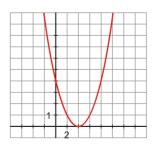
$$x = \frac{8 \pm \sqrt{64 - 64}}{2} = \frac{8}{2} = 4$$
 \rightarrow (4,0), que coincide, lógicamente, con el vértice.

— Con eje
$$Y \rightarrow x=0 \rightarrow y=4 \rightarrow (0,4)$$

· Puntos próximos al vértice:

Χ	2	3	4	5	6
Y	1	1/4	0	1/4	1

Representación



ر)

• Calculamos su vértice:
$$x = \frac{1}{4}$$
 \rightarrow $y = \frac{2}{16} - \frac{1}{4} - 3 = -\frac{25}{8}$ \rightarrow $V\left(\frac{1}{4}, -\frac{25}{8}\right)$

• Puntos de corte con los ejes:

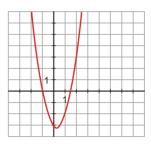
— Con eje Y
$$\rightarrow$$
 $x=0$ \rightarrow $y=-3$ \rightarrow $(0,-3)$

- Con eje
$$X \rightarrow y=0 \rightarrow 2x^2 - x - 3 = 0 \Rightarrow x = \frac{1 \pm \sqrt{1 + 24}}{4} = \frac{1 \pm \sqrt{25}}{4} = \frac{1 \pm 5}{4}$$

Los puntos de corte con el eje X son: $\left(\frac{3}{2},0\right)y\left(-1,0\right)$

Χ	-1	0	1/4	1	2
Υ	0	-3	25/8	-2	3

• Representación:



d)

• Hallamos el vértice:
$$x = \frac{-75}{-50} = \frac{3}{2}$$
 \rightarrow $y = \frac{-225}{4} + \frac{225}{2} = \frac{225}{4}$ \rightarrow $V\left(\frac{3}{2}, \frac{225}{4}\right)$

• Puntos de corte con los ejes:

— Con eje Y
$$\rightarrow$$
 $x=0$ \rightarrow $y=0$ \rightarrow $(0,0)$

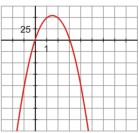
- Con eje
$$X \rightarrow y = 0 \Rightarrow -25x^2 + 75x = 0 \rightarrow -25x(x-3) = 0$$

$$x = 0 \rightarrow (0,0)$$

$$x = 3 \rightarrow (3,0)$$

• Tabla de valores para obtener puntos próximos al vértice:

•	Representación:



e)

• Hallamos su vértice:
$$x = \frac{-2}{-2} = 1 \rightarrow y = -1 + 2 - 1 = 0 \rightarrow V(1, 0)$$

• Puntos de corte con los ejes:

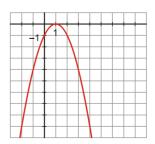
— Con eje Y
$$\rightarrow$$
 $x=0$ \rightarrow $y=-1$ \rightarrow $(0,-1)$

— Con eje $X \rightarrow$ el único punto de corte será el vértice: (1, 0)

• Puntos próximos al vértice:

•	Representation:	
	•	

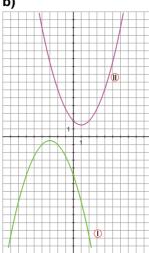
Χ	-1	0	1	2	3
Υ	-4	-1	0	-1	-4



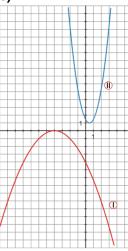
EJERCICIO 12: Halla las expresiones analíticas de estas parábolas:

a)

b)



C



Solución:

- a) La expresión analítica de ambas parábolas será de la forma $y = ax^2 + bx + c$, donde a, b, c son números reales que tenemos que calcular a partir de las gráficas.
- Ecuación de la parábola I:
 - Punto de corte con el eje Y: $(0, 6) \rightarrow c = 6$
 - Vértice: V(-3, -3), que además es un punto de la parábola.

Así:
$$\frac{-b}{2a} = -3 \rightarrow b = 6a$$

 $-3 = (-3)^2 a + (-3)b + 6$ $\rightarrow -3 = 9a - 18a + 6 \rightarrow -9 = -9a \rightarrow a = 1 \rightarrow b = 6$

- La ecuación de la parábola I es: $y = x^2 + 6x + 6$
- Ecuación de la parábola II:
 - Corta al eje Y en $(0, -1) \rightarrow c = -1$

$$\frac{-b}{2a} = \frac{1}{2} \rightarrow b = -a$$

$$- \text{Vértice } V\left(\frac{1}{2}, 0\right) : 0 = \left(\frac{1}{2}\right)^2 a + \frac{1}{2}b - 1 \rightarrow \frac{1}{4}a + \frac{1}{2}b = 1$$

$$\rightarrow \frac{1}{4}a - \frac{1}{2}a = 1 \rightarrow a - 2a = 4 \rightarrow$$

$$\rightarrow$$
 $a = -4$ \rightarrow $b = 4$

- La expresión analítica de la parábola II es: $y = -4x^2 + 4x 1$
- b) Sus ecuaciones serán de la forma $y = ax^2 + bx + c$, a, b, c, números reales.
- Ecuación de la parábola I:
 - Corta al eje Y en el punto (0, -5), luego: c = -5
 - El vértice es $V\left(-3, -\frac{1}{2}\right)$, que así mismo es un punto de la parábola. Luego de aquí obtendremos dos ecuaciones cuyas incógnitas son a y b:

$$\begin{vmatrix} -b \\ 2a \end{vmatrix} = -3 \rightarrow b = 6a
-\frac{1}{2} = (-3)^{2} a + (-3)b - 5 \rightarrow -\frac{1}{2} = 9a - 3b - 5 \end{vmatrix} - \frac{1}{2} = 9a - 18a - 5 \rightarrow 1$$

$$\rightarrow -\frac{1}{2} = -9a - 5 \rightarrow -1 = -18a - 10 \rightarrow 9 = -18a \rightarrow a = -\frac{1}{2} \rightarrow b = -3$$

— La ecuación de la parábola I es: $y = -\frac{1}{2}x^2 - 3x - 5$

- Ecuación de la parábola II:
 - Corta al eje Y en $(0, 2) \rightarrow c = 2$

$$V\left(1,\frac{3}{2}\right) \rightarrow \frac{-b}{2a} = 1 \rightarrow b = -2a \quad a - 2a = -\frac{1}{2} \rightarrow -a = -\frac{1}{2}$$

$$\frac{3}{2} = a + b + 2 \rightarrow a + b = -\frac{1}{2} \qquad a = \frac{1}{2} \qquad b = -1$$

- La ecuación de la parábola II es: $y = \frac{1}{2}x^2 x + 2$
- c) Observamos que ambas son parábolas, luego sus ecuaciones serán de la forma $y = ax^2 + bx + c$, donde a, b, c son números reales.
- Ecuación de la parábola I:
- c = -4 porque pasa por (0, -4).
- Vértice V(-4, 0), de donde sacamos dos ecuaciones:

- La ecuación de la parábola I es: $y = -\frac{1}{4}x^2 2x 4$
- Ecuación de la parábola II:

—
$$c = \frac{3}{2}$$
 porque pasa por $\left(0, \frac{3}{2}\right)$.

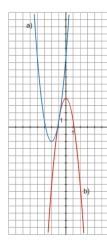
$$-V\left(\frac{1}{2},1\right) \rightarrow \frac{-b}{2a} = \frac{1}{2} \rightarrow b = -a$$

$$1 = \frac{1}{4}a + \frac{1}{2}b + \frac{3}{2} \rightarrow 4 = a + 2b + 6$$

$$\rightarrow -2 = -a \rightarrow a = 2 \rightarrow b = -2$$

— La ecuación de la parábola II es: $y = 2x^2 - 2x + \frac{3}{2}$

EJERCICIO 13: Completa las expresiones de estas dos gráficas:



$$a) y = x^2 + 12x +$$

$$\mathbf{b}) \ \mathbf{y} = \mathbf{x}^2 + \mathbf{y}$$

Solución:

Parábola a)

Punto de corte con el eje Y: $(0, 10) \rightarrow c = 10$

$$V(-2,-2)$$
 $= -2$ $\rightarrow -12 = -4a \rightarrow a = 3$

Ecuación de a): $y = 3x^2 + 12x + 10$

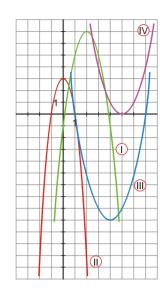
Parábola b)

c=4 \rightarrow la ecuación será de la forma $y=ax^2+4$. Un punto de la parábola es el (1, 1), así:

$$1 = a + 4 \rightarrow a = -3$$

La ecuación buscada es: $y = -3x^2 + 4$

EJERCICIO 14: Asocia a cada una de las gráficas una de las siguientes expresiones:



a)
$$y = (x - 5)^2$$

b)
$$y = -2x^2 + 8x - 1$$

c)
$$y = -4x^2 + 4$$

d)
$$y = x^2 - 8x + 7$$

Solución:

a)
$$\rightarrow$$
 IV

$$b) \rightarrow 1$$

$$c) \rightarrow 1$$

$$b) \, \rightarrow \, I \hspace{1cm} c) \, \rightarrow \, II \hspace{1cm} d) \, \rightarrow \, III$$

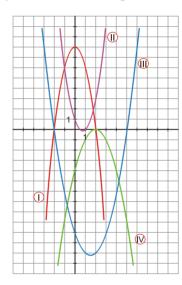
EJERCICIO 15: Relaciona cada una de las siguientes expresiones con su gráfica correspondiente:

a)
$$y = -2x^2 + 8$$

b)
$$y = x^2 - 3x - 10$$

c)
$$y = -(x-2)^2$$

d)
$$y = 2x^2 - 3x + 1$$



Solución:

a)
$$\rightarrow$$

b)
$$\rightarrow$$
 II

a)
$$\rightarrow$$
 I b) \rightarrow III c) \rightarrow IV d) \rightarrow II

EJERCICIO 16: Relaciona cada gráfica con una de las siguientes expresiones:

a)
$$y = -x^2 + 2x + 3$$

b)
$$y = (x + 1)^2$$

c)
$$y = 3x^2 - 1$$

d)
$$y = 2 - x^2$$

Solución: a)
$$\rightarrow$$
 III b) \rightarrow I c) \rightarrow II

b)
$$\rightarrow$$
 I

c)
$$\rightarrow$$
 II

d)
$$\rightarrow$$
 IV

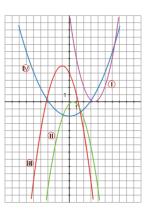
EJERCICIO 17: Asocia a cada una de las gráficas una de las siguientes expresiones:

a)
$$y - = x^2 - 2x + 4$$

$$\mathbf{b)} \ \mathbf{y} = -\left(\mathbf{x} - \frac{1}{2}\right)^2$$

c)
$$y = \frac{1}{4}x^2 - 2$$

$$d) y = \left(x - \frac{7}{2}\right)^2$$



Solución: a) \rightarrow III

b)
$$\rightarrow$$
 II

b)
$$\rightarrow$$
 II c) \rightarrow IV d) \rightarrow I

$$d) \rightarrow 1$$

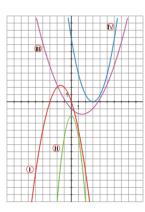
EJERCICIO 18: Relaciona cada una de las siguientes expresiones con su gráfica correspondiente:

a)
$$y = -x^2 - 3x$$

b)
$$y = (x-3)^2$$

c)
$$v = -2 - 3x^2$$

d)
$$y = \frac{1}{3}x^2 - x - 1$$



Solución:

a)
$$\rightarrow$$
 1

a)
$$\rightarrow$$
 I b) \rightarrow IV c) \rightarrow II

c)
$$\rightarrow$$
 1

$$d) \rightarrow III$$

Rectas y parábolas

EJERCICIO 19 : Resuelve gráfica y analíticamente los sistemas siguientes:

a)
$$\begin{cases} y = x^2 + 2x - \\ y = 1 - x \end{cases}$$

b)
$$\begin{cases} y = x^2 - 4x + \\ x - y - 3 = 0 \end{cases}$$

a)
$$\begin{cases} y = x^2 + 2x - 3 \\ y = 1 - x \end{cases}$$
 b)
$$\begin{cases} y = x^2 - 4x + 5 \\ x - y - 3 = 0 \end{cases}$$
 c)
$$\begin{cases} y = -2x^2 + 8x - 11 \\ y + 3 = 0 \end{cases}$$

Solución:

Resolución analítica: Despejamos y de cada ecuación e igualamos:

$$x^{2} + 2x - 3 = 1 - x$$
 \rightarrow $x^{2} + 3x - 4 = 0 \Rightarrow x = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2}$

Si
$$x = -4 \rightarrow y = 1 + 4 = 5$$

Si
$$x = 1 \rightarrow y = 0$$

Las soluciones son:
$$x = -4$$
, $y = 5$; $x = 1$, $y = 0$

Resolución gráfica

• Representamos la parábola $y = x^2 + 2x - 3$:

- Vértice:
$$x = \frac{-b}{2a} = \frac{-2}{2} = -1$$
 \rightarrow $y = 1 - 2 - 3 = -4 \Rightarrow V(-1, -4)$

— Cortes con los ejes:

Eje Y
$$\rightarrow$$
 $x = 0$ \rightarrow $y = -3$ \rightarrow $(0, -3)$